

Issues of Charm Measurements

W. Wayne Kinnison (LANL) PHENIX Collaboration Meeting

Oak Ridge National Laboratory
May 24, 1995

Importance of Charm

Signature of a QGP

May see N_{charm} increase by ≥ 2 above ϵ_{c}

 Secondary charm production sensitive to thermalization time

$$Rate \propto <\sigma_{c}>/<\sigma_{tot}>$$

$$<\sigma_{tot}>^{-1} \propto \tau_{th}$$

• It's there

Open charm could be copious in the 2—4 GeV/c² $\rm M_{_{I\!I}}$ region of dilepton spectrum

QCD prediction of $\sigma(pp \rightarrow cc)$ of 150 — 200 µb at RHIC

Recent work by PHENIX

- Study of µe for the CDR
- Akiba's Study of Electrons presented at THINC
- Spin upgrade proposal

Shows inclusive muon spectrum Charm dominates for $p_{\scriptscriptstyle T}$ > 2.2 GeV/c

Study of µe for the CDR

Dalitz cut applied $\phi_{\mu e} > 90^{\circ}$ $\theta_{\mu} > 25^{\circ}$

Akiba's Study of Electrons presented at THINC

Suggestions for Future Studies

- ee, μμ, μe calculations done in PISA including K-decays
- Look at different event generators for different cross sections
- Look at results for pp, pA, AA, dd, and dA
- Study for different √s
- Inclusive e and µ spectra from correlated and uncorreltated charm pairs with other lepton detected elsewhere in PHENIX